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General procedures are outlined for the use of orthogonal functions 
to correct for irrelevant absorption in two component spectrophoto- 
metric analysis. In adapting a traditional method to the use of 
orthogonal functions, the essential modification occurs at the final 
stage of calculation, when it is necessary to substitute suitable analogues 
for the entities, “extinction” and “wavelength.” Thus, extinction is 
replaced by coefficient o f  an orthogonal function and wavelength by 
orthogonal function over a specified range (or set) of wavelengths. Once 
these substitutions have been made, orthogonal functions may be 
readily incorporated into the usual methods and equations of spectro- 
photometric analysis. 

Although the procedures are specified in terms of Legendre poly- 
nomials (as used by Ashton and Tootill, 1956), they are equally 
applicable to the use of trigonometric functions, which may have a 
major role to play in future developments. The above general pro- 
cedures are illustrated by the analysis of a mixture of adrenaline and 
phenol. 

WHEN properly applied, Vierordt’s method gives excellent results in the 
analysis of a two component mixture and as the result of recent work, 
the conditions for proper application are now much better understood 
than they were (Swigtoslawska, 1956 ; Glenn, 1960; Pernarowski, 1961). 
For the majority of mixtures, accuracies of the order of f 2  per cent are 
readily obtainable provided, (i) the absorption curves of the two com- 
ponents are sufficiently different, (ii) a wavelength is available at which the 
component in question contributes a reasonable proportion of the mix- 
ture’s total absorption, and (iii) the amount of irrelevant absorption is 
small. In practice, the last requirement places a considerable restriction 
upon the application of the method, since the term, “irrelevant absorp- 
tion,” must also include variations of the absorbing impurity content 
of the components, which occur between batches. Thus, if the mixture 
has been prepared from batches of material that differ from the “refer- 
ence” samples used to establish the assay coefficients, the overall effect 
is equivalent to the introduction of irrelevant absorption. The results 
suffer accordingly. 

In cases, where the general shape of the impurity absorption curve is 
known, even a cursory comparison usually shows a marked difference in 
shape between the impurity absorption curve and the curve of the com- 
ponent whose concentration is sought. It is evident that if only one could 
extract some information from an absorption curve which was funda- 
mentally related to its overall shape, then in most instances, there would 
be little difficulty in coping with irrelevant absorption. The author’s 
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thoughts on this subject began from this point and in the first instance 
turned in the direction of harmonic analysis, a standard technique which 
is regularly used by physicists to characterise curve shapes. 

The basis of harmonic analysis is that a given function can be expanded 
in terms of a set of orthogonal functions (of the same variable, A). In 
other words, the function can be broken down into a set of fundamental 
shapes (orthogonal functions). Thus, 

f(A) = ago + bg, + cg, + dg, + . . .. . *  (1) 
In the present context, f(A) represents an absorption curve, which 

according to the above equation can be decomposed into the funda- 
mental shapes, go, g,, g,, etc., which, except for go, are themselves functions 
of A. The contribution, which a particular fundamental shape (e.g., 8,) 
makes to the absorption curve, is given by the appropriate coefficient 
(e.g., c for g2). The calculation of such coefficients is greatly simplified 
by the fact that the set of functions, gi, are mutually orthogonal, when 
multiplied together in an integration or matrix process over a specified 
range of A. Thus, gigj = 0 and if for simplicity, the gi are normalised, 
we also have the relationship, gigi = 1. Hence, to obtain the coefficient 
of a particular orthogonal function, g,, it is only necessary to form the 
“product”, g,f(A). Having completed this operation, the only non-zero 
term left on the right hand side of equation (1) is d&g3, which equals d, if 
the set, gi, are normalised. As will be mentioned later, these coefficients 
are proportional to concentration and are equivalent to extinctions (or 
extinction coefficients where appropriate). In order to minimise errors 
due to irrelevant absorption, it is of course necessary to choose gj and also 
the range of wavelengths so that the corresponding coefficient of the 
irrelevant absorption is very small relative to that of the component 
being determined. 

In harmonic analysis, the gi are trigonometric functions but these are 
slightly less convenient for calculation with a desk machine than are 
Legendre polynomials, as used by Ashton and Tootill (1956) when 
dealing with the problem of irrelevant absorption in the assay of griseo- 
fulvin in broth. However, although Legendre polynomials are used 
throughout this paper, there is at present no evidence that in spectro- 
photometric analysis they are superior to trigonometric functions. This 
paper is mainly concerned with preliminary thoughts on the practical 
application of orthogonal functions to the analysis of two component 
mixtures. 

Calculation of Coeficients of Orthogonal Polynomials from Absorption 

Tables of orthogonal polynomials together with the general method of 
application are given in standard works on numerical analysis (Milne, 
1949; Fisher and Yates, 1953; Davies, 1956). In order to extract from 
an absorption curve the coefficient of a given polynomial, it is necessary 
to obtain extinctions at a number of equally spaced wavelengths. For the 
extraction of the coefficient of a polynomial of a given order, there is a 
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minimum number of wavelengths which must be used. Thus, to extract 
the coefficient of the “quadratic” polynomial, P2, we need a minimum 
number of three extinctions, namely, El at A,, E2 at h, and E, at A,, the 
wavelengths being equally spaced. The coefficient of P2 is then obtained 
from the expression, (+1)E, + (-2)E, + (+l)E,. The numbers in 
brackets are given in the standard works already mentioned and depend 
not only upon the order of the polynomial but also upon the number of 
wavelengths used. For example, the coefficient of P2 is given by the 
following expression for 6 equally spaced wavelengths : 

(+5)E1 + (-1%. + (-4)E, + (-4)E4 + (-1)E5 + (+5)E6 
whereas for 7 equally spaced wavelengths, it is given by 

(+5)b + (o)E2 + (-3)E3 + (-4)E4 + (-3)E5 + (OlE6 + (+5)E7 
For present purposes, there is no need to normalise the coefficients so 
obtained. The calculation of the coefficients is very easy with a desk 
calculator and can be greatly simplified by the use of data sheets, so 
printed that after tabulating the observed extinctions in wavelength order, 
each extinction lies opposite the number by which it is to be multiplied. 

APPLICATION OF ORTHOGONAL POLYNOMIALS TO THE ANALYSIS OF “A” 

Once the coefficients of orthogonal polynomials have been calculated, 
they can be used in the traditional single and multi-component methods 
of spectrophotometric analysis just as though they were extinctions (or 
extinction coefficients, where relevant). The only difference relates to 
sign, which may be positive or negative in the case of the coefficients of 
orthogonal polynomials whereas with extinctions, the sign is always 
positive. It is of course essential to take account of the sign of the 
coeficients. 

(1) The Absorption Curves have Somewhat Different Shapes or are not too 

Let Pit be a given orthogonal polynomial (e.g., P,) which is to extend 
over the particular set of wavelengths, t. From the E (1 per cent, 1 cm.) 
of A at these wavelengths, it is possible to calculate uit, which is the co- 
efficient of PI for the E (1 per cent, 1 cm.) of A at the set of wavelengths, t. 
If instead of E (1 per cent, 1 cm.) of A, we use E (1 cm.) of a solution of 
pure A at concentration, cA, the coefficient which we obtain by the above 
process is referred to as pit. The two coefficients are related by the 
simple expression : 

AND “B” IN A MIXTURE 

Closely Overlapped 

P.‘t 
pit = UitCg Hence, cA = 

U l t  

When the solution contains B at concentration cB, in addition to A, 
the equation for pit contains an additional term, SitCB. 

Hence, 
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However, by choosing Pi and the set of wavelengths, t, with sufficient 
cunning, it may be possible to make the term, PitCB, negligibly small. 
In such a case, the assay for A can proceed as though component B were 
part of the irrelevant absorption, which is to be eliminated by the process 
of calculating pit. It may also be possible to choose another polynomial, 
Pj, and/or another set of wavelengths, u, so that cB can be evaluated 
whilst component A is ignored. 

These procedures are really limiting cases of two basic methods given 
in section (2). Thus, the methods suggested in this section are the same 
as those which receive detailed treatment in section (2), except that cg 
and cB do not have to be evaluated by means of simultaneous equations. 

Before proceeding further, it is worth stressing the fact that the above 
equations have just the same form as the traditional equations of spectro- 
photometric analysis. For example : 

E (1 cm.) Al = E (1 per cent, 1 cm.) a x l ~ A  (“traditional”) 

pit = EitCA (“orthogonal”) 

It is evident from this pair of equations that the “p” coefficients of the 
present treatment correspond to E (1 cm.) values, whereas the “u” and 
“fl” coefficients correspond to extinction coefficients. This analogy is a 
general one so that any of the equations of spectrophotometric analysis 
can be adapted to the use of orthogonal functions by writing “coefficient 
of an orthogonal function” in place of “extinction”. Furthermore, 
there is a similar general analogy between “orthogonal function over a 
specified range (or set) of wavelengths” and “wavelength”. Hence, 
suf€ixes such as “it” that occur in the present treatment have the same 
significance as suffixes which denote wavelength in the traditional 
equations. 

To sum up : orthogonal functions can be applied to any of the traditional 
methods of spectrophotometric analysis provided that, (i) “coefficient of 
an orthogonal function” be substituted for “extinction” and, (ii) “ortho- 
gonal function over a specified range (or set) of wavelengths” be substi- 
tuted for “wavelength.” 

(2)  The Absorption Curves have Similar Shapes and Overlap Considerably 
Purely for the sake of simplicity, it is assumed throughout this section 

that all polynomials are of the “four point” variety. In practical applica- 
tions, it may be necessary to use “higher point” polynomials (e.g., 12 
point). However, the following theory would only alter in respect to 
the number of wavelengths specified. A given mixture may be tackled 
by two general methods. 

(a) Using Two Sets of Wavelengths, “t” and “u” 
Two polynomials, Pit and Pj, are required, each of which refers to a 

particular set of wavelengths. Unlike (2b) below, there is no need for 
“i” and “j” to be different. Thus, both polynomials could be P2. 
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To obtain cA and cB, we require the experimental data listed in Table 1. 
A, to A, constitute the wavelength set, “t,” whilst A, to A8 constitute the 
set “u”. 

TABLE I 
NECESSARY EXPERIMENTAL DATA WHEN USING FOUR POINT POLYNOMIALS IN CON- 

JUNCTION WITH TWO SETS OF WAVELENGTHS, ‘?” AND “U” 

Data 

E (1 cm.) of mixture 

E(lpercent,  l c m . ) o f A  

E ( l  percent, 1 cm.)ofB 

~ ~ 

Wavelengths at which data ~ is jgnli2nls required 
-_----I_- 

’3 t 

As A8 A, A8 ’”ju 

“it 

JU 

@it 

A5 A, A, A8 @ju 

A, A. A, A, - - - - 
-_--__-- _ - - _  ________ 

A1 As As A, - - - - 
A, 1, A, A. 

A, A. As A, - - - - 

-------- 
U. - _ _ _  

-______- 
-------- _ _ _ _  

From Table I, it is evident that the mixture’s E (1 cm.) values at A,, 
A,, A,, and A, are used to calculate pit, the “mixture” coefficient of the 
polynomial, Pit. In the same way, the mixture’s E (1 cm.) values at 
A,, A,, A,, A,, are used to calculate pju, the “mixture” coefficient of the 
polynomial, Pj,. The other coefficients are obtained similarly as indi- 
cated in Table I. 

cA and cB are then evaluated from the following pair of simultaneous 
equations : 

pit = CritCA + pitc, 

pju = ajuca + PjucB 
(b) Using One Set of Wavelengths, ‘‘t,” Throughout 

Two dzflerent polynomials, Pi and Pj, are required (e.g., P, and P3). 
To obtain cA and cB, we require the experimental data given in Table 11. 

TABLE I1 
NECESSARY EXPERIMENTAL DATA WHEN USING FOUR POINT POLYNOMIALS IN CON- 

JUNCTION WITH ONE SET OF WAVELENGTHS, “t” 

Data 

E (1 cm.) ofmixture 

Polynomial coefficients 

Pit and Pjt 

data is required to be obtained 

E(1 per cent, 1 cm.) of A I A, 1 A, I A. I A, 1 ait and a. 
11 

Bit and Bjt I A’ I As I I A‘ I E (1 per cent, 1 cm.) of B 

From Table 11, it is evident that the mixture’s E (1 cm.) values at 
A,, A,, A,, A,, are used to calculate, (i) pit, the “mixture” coefficient of the 
polynomial, Pi, (ii) pjt, the “mixture” coefficient of the polynomial, Pj. 
The “a” and “/3” coefficients have similar meanings, which can be seen 
from the same Table. 
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cg and cB are then evaluated from the following pair of simultaneous 
equations : 

pit = u1tcA + PitcB 

pit = UltcA + SjtCB 

11 

111 

EXPERIMENTAL 
An experimental trial of each method discussed in sections (1) and (2) 

was carried out using a mixture of adrenaline (0.0033 per cent w/v) and 
phenol (0.0060 per cent w/v). The solvent was aqueous 0.1~ H,SO, 
throughout. Extinctions were measured on a Uvispek photoelectric 
spectrophotometer, great care being taken with the setting of the wave- 
length scale. The absorption curves of adrenaline, phenol and the mix- 
ture of the .Wo are shown in Fig. 1. The results are shown in Table 111. 

TABLE 111 
EXPERIMENTAL RESULTS 

241.5-296.5 5 P* 95.8 not determined 
(98.7) 

101.8 97.8 
252-285 3 P. 

264-297 3 P. 

Percentage recoveries 
Wavelength range Intervals 

Assay 1 (mv) 1 Polynomial 1 Adrenaline 1 Phenol 

IV 

I I  264-297 I 3 I P, 1 notdetermined 1 99.2 

270-292 I 2 I P,andP. I 101.0 I 99.4 

DISCUSSION OF RESULTS 
Assays I and I1 (Table 111) exemplify the determination of just one 

component by the selection of a polynomial and set of wavelengths for 
which the second component makes a negligible contribution to the 
“mixture” coefficient (see section (1)). The poor result obtained for 
assay I1 was due to the fact that over the chosen range of wavelengths, 
the phenol P3 coefficient deviates significantly from zero upon even a 
minute change of the starting wavelength. It is not therefore a good 
choice, but when allowance was made for the known small (non-zero) 
value of the phenol P, coefficient, the result improved to the recovery 
quoted in brackets. Assay I11 exemplified the method described in 
section (24, whilst assay IV was an example of the method described in 
section (2b). 

The above results are encouraging and suggest that the use of ortho- 
gonal functions warrants a careful study over a wide field of applications. 
The main source of error in these results is believed to reside in the setting 
of the wavelength scale, since above 270 mp, the phenol absorption curve 
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has a particularly steep slope. In order to accumulate the extinction 
data that is needed to calculate the coefficients, p, a and p, three solutions 
have to be measured at each of the chosen wavelengths. This can be 
done by measuring either, one solution at a time over the whole set of 
wavelengths, or, three solutions in succession at each wavelength. The 
second alternative eliminates wavelength setting errors entirely, for it is 
then possible at each wavelength to obtain the necessary extinction data 
from all three solutions without disturbing the wavelength scale. How- 
ever, it was inconvenient to adopt such a procedure on the author’s 
instrument. 

ml.l 
FIG. 1. Ultra-violet absorption curves of adrenaline and phenol in 0 . 1 ~  aqueous 
HIS.04. - - Adrenaline (0.0033 per cent w/v). - - - - = Phenol (0.0060 per 
cent w/v). . . . . . = Adrenaline (0.0033 per cent w/v) + Phenol (0-0060 per cent 
W/V). 

The same mixture of adrenaline and phenol was also assayed by the 
modified Vierordt method (Glenn, 1960) using the wavelengths 270 mp 
and 283 mp. The recoveries were (a) 100.6 per cent for adrenaline and 
(b) 98.9 per cent for phenol. However, had this mixture contained a 
linear irrelevant absorption such that the extinction of the mixture was 
increased by one quarter at 270 mp and one third at 283 mp, the re- 
coveries would have been, (a) 137.8 per cent for adrenaline and (b) 118.2 
per cent for phenol. Nevertheless, the results obtained by the use of 
orthogonal functions would not have been altered in any way by the 
same linear irrelevant absorption, which if present would produce such 
catastrophic results in the modified Vierordt method. 
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An assay based on orthogonal functions rejects all components of the 
irrelevant absorption curve other than those which are used to calculate 
the assay coefficients. (“Component” is used in the mathematical sense 
throughout this paragraph.) Thus, in assays I and 11, the P, component 
of the irrelevant absorption is the only one that is not eliminated, which 
means in particular that the constant, linear and quadratic components 
of the irrelevant absorption are all rejected. Assay I11 on the other 
hand rejects the constant, linear and all higher components of the irrele- 
vant absorption but not the quadratic, Pz, Component, for this was used 
to calculate the assay coefficients. It follows that the general procedure 
described in section (2b), which requires the use of two different poly- 
nominals over one set of wavelengths, is inherently less able to correct for 
irrelevant absorption than are the other methods. For example, in 
assay IV, the Pz and P, components of the irrelevant absorption are not 
eliminated. Nevertheless, it is probable that on average, irrelevant 
absorption contributes much more to the constant and linear components 
of the total absorption than to any others and these are of course elimin- 
ated by any of the procedures outlined above. 
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